Advertisements
Advertisements
प्रश्न
पर्याय
- \[\frac{ \pi}{4}\]
- \[\frac{\pi}{3}\]
- \[\frac{\pi}{2}\]
π
उत्तर
\[Let\, I = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cot x} d x ................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{\left( 1 + cotx \right) + \left( 1 + \tan x \right)}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{1 + \tan x + cotx + \tan x \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{2 + \tan x + \cot x}{2 + \tan x + \cot x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\, I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.