Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
उत्तर
\[\int_0^1 \log\left( 1 + x \right) d x\]
\[ = \int_0^1 \log\left( 1 + x \right) \times 1 d x\]
\[ = \left[ \log\left( 1 + x \right) x \right]_0^1 - \int_0^1 \frac{x}{1 + x}dx\]
\[ = \left[ \log\left( 1 + x \right) x \right]_0^1 - \int_0^1 \left( 1 - \frac{1}{1 + x} \right)dx\]
\[ = \left[ x\log\left( 1 + x \right) \right]_0^1 - \left[ x - \log\left( 1 + x \right) \right]_0^1 \]
\[ = \log2 - 1 + \log2\]
\[ = 2\log2 - 1\]
\[ = \log4 - \log e\]
\[ = \log\frac{4}{e}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`