Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
उत्तर
\[\int_0^1 co t^{- 1} \left( 1 - x + x^2 \right) d x\]
\[ = \int_0^1 co t^{- 1} \left[ x\left( x - 1 \right) + 1 \right] d x\]
\[ = \int_0^1 co t^{- 1} \left[ \frac{\left( x\left( x - 1 \right) + 1 \right)}{x - \left( x - 1 \right)} \right] d x\]
\[ = \int_0^1 co t^{- 1} x - co t^{- 1} \left( x - 1 \right) dx\]
\[ = \left[ xco t^{- 1} x \right]_0^1 + \int_0^1 \frac{x}{1 + x^2}dx - \left[ \left( x - 1 \right)co t^{- 1} \left( x - 1 \right) \right]_0^1 - \int_0^1 \frac{\left( x - 1 \right)}{1 + \left( x - 1 \right)^2}dx\]
\[ = \left[ xco t^{- 1} x \right]_0^1 + \frac{1}{2} \left[ \log\left( 1 + x^2 \right) \right]_0^1 - \left[ \left( x - 1 \right)co t^{- 1} \left( x - 1 \right) \right]_0^1 - \frac{1}{2} \left[ \log\left( 1 + \left( 1 - x \right)^2 \right) \right]_0^1 \]
\[ = \frac{\pi}{4} - \frac{1}{2}\log2 + \frac{\pi}{4} - \frac{1}{2}\log2\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f(2a − x) = −f(x), prove that
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`Γ(3/2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.