Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{4} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) d\ x . Then, \]
\[I = \int_0^\frac{\pi}{4} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) d\ x \]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} dx\]
\[ \Rightarrow I = \sqrt{2} \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{2 \sin x \cos x}} dx\]
\[ \Rightarrow I = \sqrt{2} \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{1 - \left( \sin x - \cos x \right)^2}} dx\]
\[Let\ \sin x - \cos\ x = t . Then, \cos x\ + \sin x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \frac{\pi}{4}, t = 0\]
\[ \therefore I = \sqrt{2} \int_{- 1}^0 \frac{dt}{\sqrt{1 - t^2}}\]
\[ \Rightarrow I = \sqrt{2} \left[ \sin^{- 1} t \right]_{- 1}^0 \]
\[ \Rightarrow I =\sqrt{2}\left[\sin^{-1}(0)-\sin^{-1}(-1)\right]\]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: