Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d \theta . \]
\[Let\ \cos\ \theta = t . Then, - \sin\ \theta\ d\theta\ = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \frac{\pi}{2}, t = 0\]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d \theta\]
\[ = \int_1^0 \frac{- dt}{\sqrt{1 + t}}\]
\[ = \int_0^1 \frac{dt}{\sqrt{1 + t}}\]
\[ = 2 \left[ \sqrt{1 + t} \right]_0^1 \]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
Prove that:
Evaluate :
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
Γ(n) is