Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d \theta . \]
\[Let\ \cos\ \theta = t . Then, - \sin\ \theta\ d\theta\ = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \frac{\pi}{2}, t = 0\]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d \theta\]
\[ = \int_1^0 \frac{- dt}{\sqrt{1 + t}}\]
\[ = \int_0^1 \frac{dt}{\sqrt{1 + t}}\]
\[ = 2 \left[ \sqrt{1 + t} \right]_0^1 \]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Find: `int logx/(1 + log x)^2 dx`