हिंदी

Π / 2 ∫ 0 X Sin X Cos X Sin 4 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

योग

उत्तर

\[Let, I = \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x} d x...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right)}{\sin^4 \left( \frac{\pi}{2} - x \right) + \cos^4 \left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\cos x \sin x}{\cos^4 x + \sin^4 x}dx ..............(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \frac{\left( x + \frac{\pi}{2} - x \right)\sin x \cos x}{\sin^4 x + \cos^4 x} d x \]
\[ = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\left( \sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x} d x\]
\[ = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{1 - 2 \sin^2 x \cos^2 x}dx\]
\[ = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{1 - 2 \sin^2 x \left( 1 - \sin^2 x \right)}dx\]
\[ = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{1 - 2 \sin^2 x + 2 \sin^4 x}dx\]
\[\text{Let, }\sin^2 x = t,\text{ then }2\sin x\cos x dx = dt \]
\[\text{When, }x \to 0 ; t \to 0\text{ and }x \to \frac{\pi}{2} ; t \to 1\]
\[ 2I = \frac{\pi}{4} \int_0^1 \frac{1}{1 - 2t + 2 t^2}dt\]
\[ = \frac{\pi}{8} \int_0^1 \frac{1}{\left( t - \frac{1}{2} \right)^2 + \frac{1}{4}}\]
\[ = \frac{\pi}{8} \left[ 2 \tan^{- 1} \left( 2t - 1 \right) \right]_0^1 \]
\[ = \frac{\pi}{4}\left[ \tan^{- 1} \left( 1 \right) - \tan^{- 1} \left( - 1 \right) \right]\]
\[ = \frac{\pi}{4}\left[ \frac{\pi}{4} + \frac{\pi}{4} \right]\]
\[ = \frac{\pi^2}{8}\]
\[Hence, I = \frac{\pi^2}{16}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 47 | पृष्ठ १२

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×