Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
योग
उत्तर
`int_(-1)^1 "f"(x) "d"x = int_(-1)^0 "f"(x) "d"x + int_0^1 "f"(x) "d"x`
= `int_(-1)^0 (-x) "d"x + int_0^1 x "d"x`
= `- [x^2/2]_(-1)^0 + [x^2/2]_0^1`
= `- [0 - (-1)^2/2] + [(1)^2/2 - ((0))/2]`
= `- [-1/2] + [1/2]`
= `1/2 + 1/2`
= 1
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]
\[\int_{- 2}^2 x e^\left| x \right| dx\]
\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]
\[\int\limits_1^3 \left( 3x - 2 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]
\[\int\limits_0^{\pi/2} \cos x\ dx\]
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate the following:
`Γ (9/2)`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1