Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
विकल्प
π/4
π/8
π/2
0
उत्तर
π/4
\[\int_0^\pi \frac{1}{5 + 3 \cos x} d x\]
\[ = \int_0^\pi \frac{1}{5 + 3 \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} + 3 - 3 \tan^2 \frac{x}{2}}dx\]
\[ = \int_0^\pi \frac{se c^2 \frac{x}{2}}{8 + 2 \tan^2 \frac{x}{2}}dx\]
\[Let\ \tan\frac{x}{2} = t, \text{then }\sec^2 \frac{x}{2} dx = 2dt\]
\[When\ x = 0, t = 0, x = \pi, t = \infty \]
\[\text{Therefore the integral becomes}\]
\[\frac{1}{2} \int_0^\infty \frac{dt}{4 + t^2}\]
\[ = \frac{1}{2} \left[ \tan^{- 1} \frac{t}{2} \right]_0^\infty \]
\[ = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate :
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: