Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
उत्तर
\[\int_0^\frac{\pi}{2} x^2 \cos2x d x\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin2x}{2}dx\]
\[ = \left[ x^2 \frac{sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} x \sin 2x dx\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} + \left[ - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx \right]\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \frac{1}{2} \left[ \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} \]
\[ = 0 - \frac{\pi}{4} - 0\]
\[ = \frac{- \pi}{4}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.