हिंदी

1 ∫ 0 24 X 3 ( 1 + X 2 ) 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

उत्तर

\[Let\ I = \int_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} d\ x . Then, \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = , t = 0\ and\ x = 1, t = 1\]
\[ \therefore I = \int_0^1 \frac{12t}{\left( 1 + t \right)^4} dt\]
\[\text{Integrating by parts}\]
\[I = 12 \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 + 12 \int_0^1 \frac{1}{3 \left( 1 + t \right)^3}dt\]
\[ \Rightarrow I = 12\left\{ \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 - \left[ \frac{1}{6 \left( 1 + t \right)^2} \right]_0^1 \right\}\]
\[ \Rightarrow I = 12\left\{ - \frac{1}{24} - 0 - \frac{1}{24} + \frac{1}{6} \right\}\]
\[ \Rightarrow I = 12 \times \frac{1}{12}\]
\[ \Rightarrow I = 1\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 34 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

Γ(4)


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×