Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} d\ x . Then, \]
\[Let\ x^2 = t . Then, 2x\ dx = dt\]
\[When\ x = , t = 0\ and\ x = 1, t = 1\]
\[ \therefore I = \int_0^1 \frac{12t}{\left( 1 + t \right)^4} dt\]
\[\text{Integrating by parts}\]
\[I = 12 \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 + 12 \int_0^1 \frac{1}{3 \left( 1 + t \right)^3}dt\]
\[ \Rightarrow I = 12\left\{ \left[ \frac{t}{- 3 \left( 1 + t \right)^3} \right]_0^1 - \left[ \frac{1}{6 \left( 1 + t \right)^2} \right]_0^1 \right\}\]
\[ \Rightarrow I = 12\left\{ - \frac{1}{24} - 0 - \frac{1}{24} + \frac{1}{6} \right\}\]
\[ \Rightarrow I = 12 \times \frac{1}{12}\]
\[ \Rightarrow I = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
Γ(4)
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: