हिंदी

Π / 2 ∫ 0 D X 4 Cos X + 2 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]

योग

उत्तर

\[\int_0^\frac{\pi}{2} \frac{1}{4\cos x + 2\sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{4 - 4 \tan^2 \frac{x}{2} + 4\tan\frac{x}{2}} d x\]
\[\text{Let }\tan\frac{x}{2} = t,\text{ then }\frac{1}{2}se c^2 \frac{x}{2} dx = dt\]
\[\text{When }x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[ = \frac{- 1}{4} \int_0^1 \frac{dt}{\left( t - \frac{1}{2} \right)^2 - \frac{5}{4}}\]
\[ = \frac{- 1}{4} \times \frac{- 4}{\sqrt{5}} \left[ \log\frac{2t - 1 - \sqrt{5}}{2t - 1 + \sqrt{5}} \right]_0^1 \]
\[ = \frac{1}{\sqrt{5}}\log\frac{\sqrt{5} + 1}{\sqrt{5} - 1}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 60 | पृष्ठ १२३

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \tan^{- 1} x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

Γ(1) is


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×