हिंदी

Π / 2 ∫ 0 X + Sin X 1 + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

0π/2x+sinx1+cosxdx
योग

उत्तर

LetI=0π/2x+sinx1+cosxdx
=0π/2x+sinx2cos2x2dx
=0π/2[x2cos2x2+sinx2cos2x2]dx
=120π/2xsec2x2dx+0π/22sinx2cosx22cos2x2dx
=12[xtanx212]0π/2120π/2tanx212dx+0π/2tanx2dx
=[xtanx2]0π/20π/2tanx2dx+0π/2tanx2dx
=[π2tanπ4]
=π2×1
=π2

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 29 | पृष्ठ ३९

संबंधित प्रश्न

231x+7dx

0π/4secxdx

011x1+xdx

0π11+sinxdx

0π/6cosxcos2x dx

0π/2x2cos x dx

ee2{1logx1(logx)2}dx

0112x2+x+1dx

01x(1x)dx

0213+2xx2dx

14x2+x2x+1dx

01(xe2x+sin pix2)dx

0π13+2sinx+cosxdx

π4π2sinx|sinx|dx

 


π2π2π2cosxsin2xdx

Evaluate each of the following integral:

02πlog(secx+tanx)dx

 


0π/2cotxcotx+tanxdx

0π/2sin3/2xsin3/2x+cos3/2xdx

Evaluate the following integral:

aalog(asinθa+sinθ)dθ

Prove that:

0πxf(sinx)dx=π20πf(sinx)dx

02(x2+2x+1)dx

031x2+9dx.

If 01(3x2+2x+k)dx=0, find the value of k.

 


If 0a14+x2dx=π8 , find the value of a.


011-x1+xdx


If 01f(x)dx=1,01xf(x)dx=a,01x2f(x)dx=a2,then01(ax)2f(x)dx equals


The value of ππsin3xcos2x dx is 

 


01cos1xdx


0π/2sin2x(1+cosx)2dx


0π/2cosx1+sin2xdx


Using second fundamental theorem, evaluate the following:

01xex2 dx


Evaluate the following:

Γ(4)


Evaluate the following:

0e-4xx4 dx


Evaluate the following:

0e-x2x5 dx


Evaluate the following integrals as the limit of the sum:

01(x+4) dx


Evaluate the following integrals as the limit of the sum:

01x2 dx


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then acf(x) dx+cbf(x) dx is


Choose the correct alternative:

The value of -π2π2cos x dx is


Find 10-4x+4x2 dx


cos2x-cos2θcosx-cosθdx is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.