Advertisements
Advertisements
प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
उत्तर
\[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \tan^{- 1} \left.\frac{x}{2}\right|_0^a = \frac{\pi}{8} ................\left[ \int\frac{1}{a^2 + x^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]
\[ \Rightarrow \frac{1}{2}\left( \tan^{- 1} \frac{a}{2} - \tan^{- 1} 0 \right) = \frac{\pi}{8}\]
\[ \Rightarrow \tan^{- 1} \frac{a}{2} - 0 = \frac{\pi}{4}\]
\[\Rightarrow \tan^{- 1} \frac{a}{2} = \frac{\pi}{4}\]
\[ \Rightarrow \frac{a}{2} = \tan\frac{\pi}{4} = 1\]
\[ \Rightarrow a = 2\]
Thus, the value of a is 2.
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Find `int sqrt(10 - 4x + 4x^2) "d"x`