Advertisements
Advertisements
प्रश्न
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
उत्तर
\[\int_\frac{- 1}{2}^\frac{1}{2} \cos x \log\left( \frac{1 + x}{1 - x} \right) d x\]
\[\text{Let }f(x) = \cos x \log\left( \frac{1 + x}{1 - x} \right)\]
\[\text{Consider }f(- x) = \cos\left( - x \right) \log\left( \frac{1 - x}{1 + x} \right)\]
\[ = \cos x\left\{ - \log\left( \frac{1 + x}{1 - x} \right) \right\} = - \cos x \log\left( \frac{1 + x}{1 - x} \right) = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_\frac{- 1}{2}^\frac{1}{2} \cos x \log\left( \frac{1 + x}{1 - x} \right) d x = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.