हिंदी

2 ∫ 0 ( X 2 + 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

02(x2+2x+1)dx

उत्तर

abf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)...............+f{a+(n1)h}]
where h=ban

Herea=0,b=2,f(x)=x2+2x+1,h=20n=2n
Therefore,
I=02(x2+2x+1)dx
=limh0h[f(0)+f(0+h)+....................+f{0+(n1)h}]
=limh0h[(0+0+1)+(h2+2h+1)+...............+{(n1)2h2+2(n1)h+1}]
=limh0h[n+h2(12+22+32.........+(n1)2)+2h{1+2+.........+(n1)h}]
=limh0h[n+h2n(n1)(2n1)6+2hn(n1)2]
=limn2n[n+2(n1)(2n1)3n+2n2]
=limn2{3+23(11n)(21n)2n}
=6+83
=263

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 23 | पृष्ठ १११
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.