Herea=0,b=2,f(x)=x2+2x+1,h=2−0n=2nTherefore,I=∫02(x2+2x+1)dx=limh→0h[f(0)+f(0+h)+....................+f{0+(n−1)h}]=limh→0h[(0+0+1)+(h2+2h+1)+...............+{(n−1)2h2+2(n−1)h+1}]=limh→0h[n+h2(12+22+32.........+(n−1)2)+2h{1+2+.........+(n−1)h}]=limh→0h[n+h2n(n−1)(2n−1)6+2hn(n−1)2]=limn→∞2n[n+2(n−1)(2n−1)3n+2n−2]=limn→∞2{3+23(1−1n)(2−1n)−2n}=6+83=263
Solve each of the following integral:
If ∫0a3x2dx=8, write the value of a.
∫0π11+sinxdx equals
The derivative of f(x)=∫x2x31logetdt,(x>0), is
The value of ∫0π/2log(4+3sinx4+3cosx)dx is
Evaluate : ∫0πx1+sinαsinxdx .
∫0π/2sinx1+cosxdx
∫121x2e−1/xdx
∫12x+3x(x+2)dx
∫0π/4tan4xdx
∫01|2x−1|dx
∫−1/21/2cosxlog(1+x1−x)dx
∫0πxsinx1+cos2xdx
Evaluate the following:
d∫(x2+2)x+1dx