Advertisements
Advertisements
प्रश्न
उत्तर
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)^2 + 2x\left( x^2 + 1 \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right)\left( x^2 + 1 + 2x \right)}dx\]
\[ = \int_0^1 \frac{1}{\left( x^2 + 1 \right) \left( x + 1 \right)^2}dx\]
\[ \Rightarrow 1 = A\left( x + 1 \right)\left( x^2 + 1 \right) + B\left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2\]
D = 0
\[ = \int_0^1 \frac{\frac{1}{2}}{x + 1}dx + \int_0^1 \frac{\frac{1}{2}}{\left( x + 1 \right)^2}dx + \int_0^1 \frac{- \frac{1}{2}x}{x^2 + 1}\]
\[ = \left.\frac{1}{2} \log\left( x + 1 \right)\right|_0^1 + \left.\frac{1}{2} \times \left( - \frac{1}{x + 1} \right)\right|_0^1 - \frac{1}{4} \int_0^1 \frac{2x}{x^2 + 1}dx\]
\[ = \frac{1}{2}\left( \log2 - \log1 \right) - \frac{1}{2}\left( \frac{1}{2} - 1 \right) - \left.\frac{1}{4} \log\left( x^2 + 1 \right)\right|_0^1 \]
\[ = \frac{1}{2}\log2 + \frac{1}{4} - \frac{1}{4}\left( \log2 - \log1 \right) ................\left( \log1 = 0 \right)\]
\[ = \frac{1}{4}\log 2 + \frac{1}{4}\log e\]
\[ = \frac{1}{4}\left( \log 2 + \log e \right)\]
\[ = \frac{1}{4}\log\left( 2e \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.