Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
उत्तर
\[\int_0^1 \frac{1 - x}{1 + x} dx\]
\[ = \int_0^1 \frac{1 - x - 1 + 1}{1 + x} d x\]
\[ = \int_0^1 \frac{2 - \left( x + 1 \right)}{1 + x} d x\]
\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 \frac{1 + x}{1 + x}dx\]
\[ = \int_0^1 \frac{2}{1 + x} - \int_0^1 dx\]
\[ = 2 \left[ \log\left( 1 + x \right) \right]_0^1 - \left[ x \right]_0^1 \]
\[ = 2\log2 - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.