हिंदी

Π / 2 ∫ 0 Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \sin^3 x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \sin x \sin^2 x\ d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sin x \left( 1 - \cos^2 x \right) dx\]
\[Let u = \cos x, du = - \sin\ x\ dx\]
\[ \therefore I = \int - \left( 1 - u^2 \right) du\]
\[ \Rightarrow I = \left[ \frac{u^3}{3} - u \right]\]
\[ \Rightarrow I = \left[ \frac{\cos^3 x}{3} - \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 - \frac{1}{3} + 1\]
\[ \Rightarrow I = \frac{2}{3}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 56 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

Γ(1) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×