Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
योग
उत्तर
`int_1^2 (x - 1)/x^2 "d"x = int_1^2 (x/x^2 - 1/x^2) "d"x`
= `int_1^2 (1/x - x^-2) "d"x`
= `int_1^2 1/x "d"x - int_1^2 x^-2 "d"x`
= `[log|x|]_1^2 - [((x^(2 + 1))/(-2 + 1))]^2`
= `{log|2| - log|1|} - {1/x}_1^2`
= `[log 2 - 0] + [1/2 - 1/1]`
= `log 2 + [(1 - 2)/2]`
= `log 2 - 1/2`
= `1/2 [2 log 2 - 1]`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^\infty e^{- x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]
\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]
\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]
\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]
\[\int\limits_0^2 \left( x^2 - x \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.