Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
उत्तर
\[Let I = \int_0^\pi \frac{x}{a^2 - \cos^2 x} d x ..............(1)\]
\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 \left( \pi - x \right)} d x \]
\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 x} d x ...............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \frac{\pi}{a^2 - \cos^2 x} d x \]
\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{1}{a - cosx} + \frac{1}{a + cosx} \right] dx\]
\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{\sec^2 \frac{x}{2}}{\left( a - 1 \right) + \left( a + 1 \right) \tan^2 \frac{x}{2}} + \frac{\sec^2 \frac{x}{2}}{\left( a + 1 \right) + \left( a - 1 \right) \tan^2 \frac{x}{2}} \right]dx\]
\[Let, \tan\frac{x}{2} = t, then \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[2I = \frac{\pi}{a} \int_0^\infty \left[ \frac{1}{\left( a - 1 \right) + \left( a + 1 \right) t^2} + \frac{1}{\left( a + 1 \right) + \left( a - 1 \right) t^2} \right] dt\]
\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}} \left[ \tan^{- 1} \sqrt{\frac{a + 1}{a - 1}}t + \tan^{- 1} \sqrt{\frac{a - 1}{a + 1}}t \right]_0^\infty \]
\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ = \frac{\pi^2}{a\sqrt{\left( a^2 - 1 \right)}}\]
\[ \therefore I = \frac{\pi^2}{2a\sqrt{\left( a^2 - 1 \right)}}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Write the coefficient a, b, c of which the value of the integral
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.