Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int_0^2 \left[ x \right] d x\]
\[\text{We know that}, \]
\[\left[ x \right] = \begin{cases}0&,& 0 < x < 1\\1&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int_0^2 \left[ x \right] d x\]
\[ = \int_0^1 \left[ x \right] d x + \int_1^2 \left[ x \right] d x\]
\[ = \int_0^1 \left( 0 \right) d x + \int_1^2 \left( 1 \right) d x\]
\[ = 0 + \left[ x \right]_1^2 \]
\[ = 2 - 1 = 1\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`Γ(3/2)`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`