Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int x\sin\pi x dx\]
\[ = x\int \sin\pi x dx - \int\left( \frac{d}{dx}x\int \sin\pi x dx \right)dx\]
\[ = x\left( \frac{- cos\pi x}{\pi} \right) - \int\left( \frac{- cos\pi x}{\pi} \right)dx\]
Applying the limits, we get
\[\int_0^1 \left| x\sin\pi x \right|dx = \left( \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right)_0^1 \]
\[ = \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) - \left( 0 + 0 \right)\]
\[ = \frac{1}{\pi}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.