Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int x\sin\pi x dx\]
\[ = x\int \sin\pi x dx - \int\left( \frac{d}{dx}x\int \sin\pi x dx \right)dx\]
\[ = x\left( \frac{- cos\pi x}{\pi} \right) - \int\left( \frac{- cos\pi x}{\pi} \right)dx\]
Applying the limits, we get
\[\int_0^1 \left| x\sin\pi x \right|dx = \left( \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right)_0^1 \]
\[ = \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) - \left( 0 + 0 \right)\]
\[ = \frac{1}{\pi}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Prove that:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.