Advertisements
Advertisements
प्रश्न
पर्याय
π/3
π/6
π/12
π/2
उत्तर
\[\frac{\pi}{12}\]
\[Let\, I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cotx}} d x .............(1)\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cot\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}} dx ..............\left[\text{Using }\int_a^b f\left( x \right) d x = \int_a^b f\left( a + b - x \right) d x \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan x}} d x .................(2)\]
Adding (1) and (2) we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{1}{1 + \sqrt{cotx}} + \frac{1}{1 + \sqrt{\tan x}} \right] d x \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{\left( 1 + \sqrt{cotx} \right)\left( 1 + \sqrt{\tan x} \right)}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} \right]dx \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ = \left[ x \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{\pi}{3} - \frac{\pi}{6}\]
\[ = \frac{\pi}{6}\]
\[\text{Hence, }I = \frac{\pi}{12}\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.