मराठी

Π ∫ 0 Sin 3 X ( 1 + 2 Cos X ) ( 1 + Cos X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

उत्तर

\[Let\ I = \int_0^\pi \sin^3 x \left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 d x . Then, \]
\[I = \int_0^\pi \sin x \sin^2 x \left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 d x\]
\[ \Rightarrow I = \int_0^\pi \sin x \left( 1 - \cos^2 x \right)\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 d x\]
\[ \Rightarrow I = \int_0^\pi \sin x \left( 1 - \cos x \right)\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^3 d x\]
\[Let\ \cos x = t . Then, - \sin\ x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \pi, t = - 1\]
\[ \therefore I = - \int_1^{- 1} \left( 1 - t \right)\left( 1 + 2t \right) \left( 1 + t \right)^3 dt\]
\[ \Rightarrow I = \int_{- 1}^1 \left( 1 + t - 2 t^2 \right)\left( 1 + t^3 + 3t + 3 t^2 \right) dt\]
\[ \Rightarrow I = \int_{- 1}^1 \left( 1 + t^3 + 3t + 3 t^2 + t + t^4 + 3 t^2 + 3 t^3 - 2 t^2 - 2 t^5 - 6 t^3 - 6 t^4 \right) dt\]
\[ \Rightarrow I = \int_{- 1}^1 \left( 1 + 4t + 4 t^2 - 2 t^3 - 5 t^4 - 2 t^5 \right) dt\]
\[ \Rightarrow I = \left[ t + 2 t^2 + \frac{4 t^3}{3} - \frac{t^4}{2} - t^5 - \frac{t^6}{3} \right]_{- 1}^1 \]
\[ \Rightarrow I = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} + 1 - 2 + \frac{4}{3} + \frac{1}{2} - 1 + \frac{1}{3}\]
\[ \Rightarrow I = \frac{8}{3}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 48 | पृष्ठ ४०

संबंधित प्रश्‍न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×