Advertisements
Advertisements
प्रश्न
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
पर्याय
x
x2
`1/"x"`
None of the above options
उत्तर
`1/"x"`
Explanation:
Given, `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`
Taking L.H.S. = `int "e"^"x" (("x" - 1)/"x"^2) "dx"`
= `int "e"^"x" (1/"x" - 1/"x"^2) "dx"`
= `int "e"^"x". 1/"x" "dx" - int "e"^"x". 1/"x"^2 dx"`
Integrating the first integral by parts taking `1/"x"` as the first function,
= `1/"x". "e"^"x" + int 1/"x"^2. "e"^"x" "dx" - int "e"^"x". 1/"x"^2 "dx" + "c"`
= `1/"x". "e"^"x" + "c"`
On comparing with the R.H.S., we get
f(x) = `1/"x"`
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`