Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
उत्तर
We have,
\[I = \int\limits_0^{1 . 5} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left[ x^2 \right] dx + \int\limits_1^\sqrt{2} \left[ x^2 \right] dx + \int\limits_\sqrt{2}^{1 . 5} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left( 0 \right) dx + \int\limits_1^\sqrt{2} \left( 1 \right) dx + \int\limits_\sqrt{2}^{1 . 5} \left( 2 \right) dx ..............\left(\because \left[ x^2 \right] = \begin{cases}0 &where,& 0 < x < 1 \\ 1 &where,& 1 < x < \sqrt{2}\\2 &where,& \sqrt{2} < x < 1.5 \end{cases}\right)\]
\[ = 0 + \left[ x \right]_1^\sqrt{2} + \left[ 2x \right]_\sqrt{2}^{1 . 5} \]
\[ = \left[ x \right]_1^\sqrt{2} + 2 \left[ x \right]_\sqrt{2}^{1 . 5} \]
\[ = \left( \sqrt{2} - 1 \right) + 2\left( 1 . 5 - \sqrt{2} \right)\]
\[ = \sqrt{2} - 1 + 3 - 2\sqrt{2}\]
\[ = 2 - \sqrt{2}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
The value of `int_2^3 x/(x^2 + 1)`dx is ______.