हिंदी

15 ∫ 0 [ X 2 ] D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{15} \left[ x^2 \right] dx\]

योग

उत्तर

We have,

\[I = \int\limits_0^{1 . 5} \left[ x^2 \right] dx\]

\[ = \int\limits_0^1 \left[ x^2 \right] dx + \int\limits_1^\sqrt{2} \left[ x^2 \right] dx + \int\limits_\sqrt{2}^{1 . 5} \left[ x^2 \right] dx\]

\[ = \int\limits_0^1 \left( 0 \right) dx + \int\limits_1^\sqrt{2} \left( 1 \right) dx + \int\limits_\sqrt{2}^{1 . 5} \left( 2 \right) dx ..............\left(\because \left[ x^2 \right] = \begin{cases}0 &where,& 0 < x < 1 \\ 1 &where,& 1 < x < \sqrt{2}\\2 &where,& \sqrt{2} < x < 1.5 \end{cases}\right)\]

\[ = 0 + \left[ x \right]_1^\sqrt{2} + \left[ 2x \right]_\sqrt{2}^{1 . 5} \]

\[ = \left[ x \right]_1^\sqrt{2} + 2 \left[ x \right]_\sqrt{2}^{1 . 5} \]

\[ = \left( \sqrt{2} - 1 \right) + 2\left( 1 . 5 - \sqrt{2} \right)\]

\[ = \sqrt{2} - 1 + 3 - 2\sqrt{2}\]

\[ = 2 - \sqrt{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 45 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int_0^1 | x\sin \pi x | dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×