Advertisements
Advertisements
प्रश्न
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
उत्तर
\[\int_{- a}^a \frac{x e^{x^2}}{1 + x^2} d x\]
\[\text{Let }f(x) = \frac{x e^{x^2}}{1 + x^2}\]
\[\text{Consider }f(-x) = - \frac{x e^{x^2}}{1 + x^2} = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_{- a}^a \frac{x e^{x^2}}{1 + x^2} d x = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`