Advertisements
Advertisements
प्रश्न
\[\int\limits_{- 1}^1 e^{2x} dx\]
उत्तर
\[\text{Here }a = - 1, b = 1, f\left( x \right) = e^{2x} , h = \frac{1 + 1}{n} = \frac{2}{n}\]
Therefore,
\[ \int_{- 1}^1 e^{2x} d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ f\left( - 1 \right) + f\left( - 1 + h \right) + . . . . . . . . . . + f\left( - 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ e^{- 2} + e^{2\left( - 1 + h \right)} + e^{2\left( - 1 + 2h \right)} + . . . . . . . + e^{2\left( - 1 + \left( n - 1 \right)h \right)} \right]\]
\[ = \lim_{h \to 0} h e^{- 2} \left[ \frac{\left( e^{2h} \right)^n - 1}{e^{2h} - 1} \right]\]
\[ = \lim_{h \to 0} e^{- 2} \left[ \frac{e^4 - 1}{\frac{e^{2h} - 1}{2h}} \right] \times \frac{1}{2} .......................\left(\text{Since, nh = 2 }\right)\]
\[ = \frac{1}{2}\left( e^2 - e^{- 2} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
Prove that:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`