Advertisements
Advertisements
प्रश्न
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
उत्तर
\[\int_{- \pi}^\pi x^{10} \sin^7 x d x\]
\[Let f\left( x \right) = x^{10} \sin^7 x\]
\[\text{Consider }f\left( - x \right) = \left( - x \right)^{10} \sin^7 \left( - x \right) = - x^{10} \sin^7 x = - f\left( x \right)\]
Hence f(x) is an odd function
Therefore
\[ \int_{- \pi}^\pi x^{10} \sin^7 x d x = 0\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.