Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[ I = \int_0^a \frac{1}{x + \sqrt{a^2 - x^2}} d x\]
Putting \[x = a \sin \theta\]
\[ \Rightarrow dx = a \cos \theta d\theta\]
\[\text{When }x \to 0; \theta \to 0 \]
\[\text{And }x \to a; \theta \to \frac{\pi}{2}\]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + \sqrt{a^2 - \left( a \sin \theta \right)^2}}d\theta\]
\[ = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + a \cos \theta}d\theta\]
\[I = \int_0^\frac{\pi}{2} \frac{\cos \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos \left( \frac{\pi}{2} - \theta \right)}{\sin \left( \frac{\pi}{2} - \theta \right) + \cos \left( \frac{\pi}{2} - \theta \right)}d\theta\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\cos \theta + \sin \theta}d\theta\]
\[I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 2 \right)\]
\[\text{By adding (1) and (2), we get}\]
\[2I = \int_0^\frac{\pi}{2} \frac{\cos \theta + \sin \theta}{\sin \theta + \cos \theta}d\theta \]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} d\theta \]
\[ \Rightarrow 2I = \left[ \theta \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x