हिंदी

A ∫ 0 1 X + √ a 2 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]
योग

उत्तर

We have, 

\[ I = \int_0^a \frac{1}{x + \sqrt{a^2 - x^2}} d x\]

Putting \[x = a \sin \theta\]

\[ \Rightarrow dx = a \cos \theta d\theta\]

\[\text{When }x \to 0; \theta \to 0 \]

\[\text{And }x \to a; \theta \to \frac{\pi}{2}\]

\[ \therefore I = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + \sqrt{a^2 - \left( a \sin \theta \right)^2}}d\theta\]

\[ = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + a \cos \theta}d\theta\]

\[I = \int_0^\frac{\pi}{2} \frac{\cos \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]

\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos \left( \frac{\pi}{2} - \theta \right)}{\sin \left( \frac{\pi}{2} - \theta \right) + \cos \left( \frac{\pi}{2} - \theta \right)}d\theta\]

\[ = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\cos \theta + \sin \theta}d\theta\]

\[I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 2 \right)\]

\[\text{By adding (1) and (2), we get}\]

\[2I = \int_0^\frac{\pi}{2} \frac{\cos \theta + \sin \theta}{\sin \theta + \cos \theta}d\theta \]

\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} d\theta \]

\[ \Rightarrow 2I = \left[ \theta \right]_0^\frac{\pi}{2} \]

\[ \Rightarrow 2I = \frac{\pi}{2}\]

\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 7 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_0^2 2x\left[ x \right]dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×