Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} d x ................(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan\left( \frac{\pi}{2} - x \right)}} dx.....................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx\right]\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{cotx}} d x .................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{cotx}} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{\left( 1 + \sqrt{\tan x} \right) \left( 1 + \sqrt{cotx} \right)} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{1 + \sqrt{cotx} + \sqrt{\tan x} + \sqrt{\tan x \ cotx}} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} dx\]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If f(x) is a continuous function defined on [−a, a], then prove that
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: