Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} d x . Then, \]
\[I = \int_e^{e^2} 1 \frac{1}{\log x} dx - \int_e^{e^2} \frac{1}{\left( \log x \right)^2} dx\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left\{ \left[ \frac{x}{\log x} \right]_e^{e^2} - \int_e^{e^2} \frac{- 1}{x \left( \log x \right)^2} x d x \right\} - \int_e^{e^2} \frac{1}{\left( \log x \right)^2} dx\]
\[ \Rightarrow I = \left[ \frac{x}{\log x} \right]_e^{e^2} + \int_e^{e^2} \frac{1}{\left( \log x \right)^2} d x - \int_e^{e^2} \frac{1}{\left( \log x \right)^2} dx\]
\[ \Rightarrow I = \left[ \frac{x}{\log x} \right]_e^{e^2} + 0\]
\[ \Rightarrow I = \frac{e^2}{\log e^2} - \frac{e}{\log e}\]
\[ \Rightarrow I = \frac{e^2}{2 \log e} - \frac{e}{\log e}\]
\[ \Rightarrow I = \frac{e^2}{2} - e\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Solve each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`