Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} d x . Then, \]
\[I = \int_e^{e^2} 1 \frac{1}{\log x} dx - \int_e^{e^2} \frac{1}{\left( \log x \right)^2} dx\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left\{ \left[ \frac{x}{\log x} \right]_e^{e^2} - \int_e^{e^2} \frac{- 1}{x \left( \log x \right)^2} x d x \right\} - \int_e^{e^2} \frac{1}{\left( \log x \right)^2} dx\]
\[ \Rightarrow I = \left[ \frac{x}{\log x} \right]_e^{e^2} + \int_e^{e^2} \frac{1}{\left( \log x \right)^2} d x - \int_e^{e^2} \frac{1}{\left( \log x \right)^2} dx\]
\[ \Rightarrow I = \left[ \frac{x}{\log x} \right]_e^{e^2} + 0\]
\[ \Rightarrow I = \frac{e^2}{\log e^2} - \frac{e}{\log e}\]
\[ \Rightarrow I = \frac{e^2}{2 \log e} - \frac{e}{\log e}\]
\[ \Rightarrow I = \frac{e^2}{2} - e\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is