English

Π / 4 ∫ − π / 4 1 1 + Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

Solution

\[Let\ I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} d x . Then, \]
\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x} d x\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{1 - \sin^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{\cos^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - \sec x \tan x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \sec x \right]_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - \sqrt{2} \right) - \left( - 1 - \sqrt{2} \right)\]
\[ \Rightarrow I = 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 16 | Page 16

RELATED QUESTIONS

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×