Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} d x . Then, \]
\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x} d x\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{1 - \sin^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{\cos^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - \sec x \tan x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \sec x \right]_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - \sqrt{2} \right) - \left( - 1 - \sqrt{2} \right)\]
\[ \Rightarrow I = 2\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.