Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{4} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) d\ x . Then, \]
\[I = \int_0^\frac{\pi}{4} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) d\ x \]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} dx\]
\[ \Rightarrow I = \sqrt{2} \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{2 \sin x \cos x}} dx\]
\[ \Rightarrow I = \sqrt{2} \int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{\sqrt{1 - \left( \sin x - \cos x \right)^2}} dx\]
\[Let\ \sin x - \cos\ x = t . Then, \cos x\ + \sin x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \frac{\pi}{4}, t = 0\]
\[ \therefore I = \sqrt{2} \int_{- 1}^0 \frac{dt}{\sqrt{1 - t^2}}\]
\[ \Rightarrow I = \sqrt{2} \left[ \sin^{- 1} t \right]_{- 1}^0 \]
\[ \Rightarrow I =\sqrt{2}\left[\sin^{-1}(0)-\sin^{-1}(-1)\right]\]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`