Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{4} \frac{\tan^3 x}{1 + \cos 2x} d\ x . Then, \]
\[I = \int_0^\frac{\pi}{4} \frac{\tan^3 x}{2 \cos^2 x} d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\frac{\pi}{4} \tan^3 x \sec^2 x dx\]
\[Let \tan\ x = t . Then, \sec^2 x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{4}, t = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 t^3 dt\]
\[ \Rightarrow I = \frac{1}{2} \left[ \frac{t^4}{4} \right]_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{1}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{1}{8}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Solve each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`