Advertisements
Advertisements
Question
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Sum
Solution
= `int_1^"e" (1 + logx)^-3/x "d"x`
= `[("f"(x)^(-3 + 1))/(-3 + 1)]_1^"e"`
= `[(1 + log x)^-2/-2]_1^"e"`
= `- 1/2 [[1 + log x]^-2]_1^"e"`
= `- 1/2 [(1 + log "e")^-2 (1 + log 1)^-2]`
= - 1/2 [(1 + 1)^-2 - (1)^-2]`
= `- 1/2 [1/(2)^2 - 1/(1)^2]`
= `- 1/2[1/4 - 1]`
= `-1/2[(1 - 4)/4]`
= `- 1/2[(-3)/4]`
= `3/8`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]
\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]
\[\int\limits_0^1 \tan^{- 1} x\ dx\]
Evaluate the following integral:
\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]
\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]
\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]
Evaluate the following integral:
\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]
\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2