English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Using second fundamental theorem, evaluate the following: ed∫1edxx(1+logx)3 - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`

Sum

Solution

= `int_1^"e" (1 + logx)^-3/x  "d"x`

= `[("f"(x)^(-3 + 1))/(-3 + 1)]_1^"e"`

= `[(1 + log x)^-2/-2]_1^"e"`

= `- 1/2 [[1 + log x]^-2]_1^"e"`

= `- 1/2 [(1 + log "e")^-2  (1 + log 1)^-2]`

= - 1/2 [(1 + 1)^-2 - (1)^-2]`

= `- 1/2 [1/(2)^2 - 1/(1)^2]`

= `- 1/2[1/4 - 1]`

= `-1/2[(1 - 4)/4]`

= `- 1/2[(-3)/4]`

= `3/8`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 2: Integral Calculus – 1 - Exercise 2.8 [Page 47]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 2 Integral Calculus – 1
Exercise 2.8 | Q I.6 | Page 47
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×