Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^\frac{\pi}{2}\ x\ \cos\ x\ d\ x\ . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1 \sin x d x\]
\[ \Rightarrow I = \left[ x \sin x \right]_0^\frac{\pi}{2} + \left[ \cos x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int sqrt(10 - 4x + 4x^2) "d"x`