Advertisements
Advertisements
Question
Solution
\[Let\, I = \int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]
\[ = \int_0^{\pi/2} \frac{x + \sin x}{2 \cos^2 \frac{x}{2}} dx\]
\[ = \int_0^{\pi/2} \left[ \frac{x}{2 \cos^2 \frac{x}{2}} + \frac{\sin x}{2 \cos^2 \frac{x}{2}} \right]dx\]
\[ = \frac{1}{2} \int_0^{\pi/2} x se c^2 \frac{x}{2}dx + \int_0^{\pi/2} \frac{2\sin \frac{x}{2}\cos\frac{x}{2}}{2 \cos^2 \frac{x}{2}}dx\]
\[ = \frac{1}{2} \left[ x \frac{\tan\frac{x}{2}}{\frac{1}{2}} \right]_0^{\pi/2} - \frac{1}{2} \int_0^{\pi/2} \frac{\tan\frac{x}{2}}{\frac{1}{2}}dx + \int_0^{\pi/2} \tan\frac{x}{2}dx\]
\[ = \left[ x \tan\frac{x}{2} \right]_0^{\pi/2} - \int_0^{\pi/2} \tan\frac{x}{2} dx + \int_0^{\pi/2} \tan\frac{x}{2}dx\]
\[ = \left[ \frac{\pi}{2} \tan\frac{\pi}{4} \right]\]
\[ = \frac{\pi}{2} \times 1\]
\[ = \frac{\pi}{2} \]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Find: `int logx/(1 + log x)^2 dx`