Advertisements
Advertisements
Question
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Sum
Solution
`int_(-1)^1 "f"(x) "d"x = int_(-1)^0 "f"(x) "d"x + int_0^1 "f"(x) "d"x`
= `int_(-1)^0 (-x) "d"x + int_0^1 x "d"x`
= `- [x^2/2]_(-1)^0 + [x^2/2]_0^1`
= `- [0 - (-1)^2/2] + [(1)^2/2 - ((0))/2]`
= `- [-1/2] + [1/2]`
= `1/2 + 1/2`
= 1
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]
\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]
\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]
\[\int\limits_0^2 \left[ x \right] dx .\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`