Advertisements
Advertisements
Question
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Sum
Solution
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}`
⇒ `int_0^1 "f"(x) "d"x` = 2
⇒ `int_0^2 "c"x "d"x` = 2
`"c"[x^2/2]_0^1` = 2
`"c"[1/2 - 0]` = 2
`1/2` = 2
⇒ c = 4
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]
\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]
\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]
\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\] is equal to
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.