Advertisements
Advertisements
Question
Solution
\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos2x}{2} dx\]
\[ = \frac{1}{2} \int_0^\frac{\pi}{2} \left( 1 - \cos2x \right) dx\]
\[ = \frac{1}{2} \left[ x - \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If f(2a − x) = −f(x), prove that
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.