Advertisements
Advertisements
Question
Solution
\[\text{We have}\],
\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]
\[I = \int_1^4 f\left( x \right) d x\]
\[ \Rightarrow I = \int_1^2 f\left( x \right) d x + \int_2^4 f\left( x \right) d x ..............\left[ \text{Additive property} \right]\]
\[ \Rightarrow I = \int_1^2 \left( 4x + 3 \right) dx + \int_2^4 \left( 3x + 5 \right) dx\]
\[ \Rightarrow I = \left[ 2 x^2 + 3x \right]_1^2 + \left[ \frac{3 x^2}{2} + 5x \right]_2^4 \]
\[ \Rightarrow I = 8 + 6 - 2 - 3 + 24 + 20 - 6 - 10\]
\[ \Rightarrow I = 37\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.