English

∫ π 2 − π 2 − π 2 √ Cos X Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]
Sum

Solution

\[Let I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x \sin^2 x}}dx\]
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx\]
\[ = - \frac{\pi}{2} \times 2 \int_0^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx .................\left[ f\left( - x \right) = \sqrt{\cos\left( - x \right)}\left| \sin\left( - x \right) \right| = \sqrt{\cos x}\left| - \sin x \right| = \sqrt{\cos x}\left| \sin x \right| = f\left( x \right) \right]\]
\[= - \pi \int_0^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\sin x}dx ...................\left( \left| \sin x \right| = \sin x, 0 \leq x \leq \frac{\pi}{2} \right)\]
\[ = - \pi \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{\cos x}\left( 1 - \cos^2 x \right)}dx\]
Put `cosx = z^2`
\[\therefore - \sin x\ dx = 2zdz\]
When
\[x \to 0, z \to 1\]
When
\[x \to \frac{\pi}{2}, z \to 0\]
\[\therefore I = 2\pi \int_1^0 \frac{zdz}{z\left( 1 - z^4 \right)}\]
\[ = 2\pi \int_1^0 \frac{dz}{1 - z^4}\]
\[ = 2\pi \int_1^0 \frac{dz}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)}\]
Now,
\[\frac{1}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)} = \frac{A}{1 - z} + \frac{B}{1 + z} + \frac{Cz + D}{1 + z^2}\]
\[ \Rightarrow 1 = A\left( 1 + z \right)\left( 1 + z^2 \right) + B\left( 1 - z \right)\left( 1 + z^2 \right) + \left( Cz + D \right)\left( 1 - z \right)\left( 1 + z \right)\]
Putting z = 1, we get
\[A = \frac{1}{4}\]
Putting z = −1, we get
\[B = \frac{1}{4}\]
Putting z = 0, we get
\[1 = A + B + D\]
\[ \Rightarrow D = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}\]
Equating coefficient of z3 on both sides, we get
\[A - B + C = 0\]
\[ \Rightarrow \frac{1}{4} - \frac{1}{4} + C = 0\]
\[ \Rightarrow C = 0\]
\[\therefore I = 2\pi \int_1^0 \frac{dz}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)}\]
\[ = 2\pi \int_1^0 \frac{\frac{1}{4}}{1 - z}dz + 2\pi \int_1^0 \frac{\frac{1}{4}}{1 + z}dz + 2\pi \int_1^0 \frac{\frac{1}{2}}{1 + z^2}dz\]
\[ = \left.\frac{2\pi}{4} \times \frac{\log\left( 1 - z \right)}{- 1}\right|_1^0 + \left.\frac{2\pi}{4} \times \log\left( 1 + z \right)\right|_1^0 + \left.\frac{2\pi}{2} \times \tan^{- 1} z\right|_1^0 \]
\[ = - \frac{\pi}{2}\left( \log1 - \log0 \right) + \frac{\pi}{2}\left( \log1 - \log2 \right) + \pi\left( \tan^{- 1} 0 - \tan^{- 1} 1 \right)\]
\[ = - \frac{\pi}{2}\left[ 0 - \left( - \infty \right) \right] + \frac{\pi}{2}\left( 0 - \log2 \right) + \pi\left( 0 - \frac{\pi}{4} \right)\]
\[ = - \infty - \frac{\pi}{2}\log2 - \frac{\pi^2}{4}\]
\[ = - \infty\]
shaalaa.com

Notes

The answer does not matches with the answer provided for the question.

Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 26 | Page 56

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Choose the correct alternative:

`Γ(3/2)`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×