Advertisements
Advertisements
Question
Solution
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x \sin^2 x}}dx\]
\[ = - \frac{\pi}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx\]
\[ = - \frac{\pi}{2} \times 2 \int_0^\frac{\pi}{2} \frac{1}{\sqrt{\cos x}\left| \sin x \right|}dx .................\left[ f\left( - x \right) = \sqrt{\cos\left( - x \right)}\left| \sin\left( - x \right) \right| = \sqrt{\cos x}\left| - \sin x \right| = \sqrt{\cos x}\left| \sin x \right| = f\left( x \right) \right]\]
\[ = - \pi \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{\cos x}\left( 1 - \cos^2 x \right)}dx\]
\[ = 2\pi \int_1^0 \frac{dz}{1 - z^4}\]
\[ = 2\pi \int_1^0 \frac{dz}{\left( 1 - z \right)\left( 1 + z \right)\left( 1 + z^2 \right)}\]
\[ \Rightarrow 1 = A\left( 1 + z \right)\left( 1 + z^2 \right) + B\left( 1 - z \right)\left( 1 + z^2 \right) + \left( Cz + D \right)\left( 1 - z \right)\left( 1 + z \right)\]
\[1 = A + B + D\]
\[ \Rightarrow D = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}\]
\[ \Rightarrow \frac{1}{4} - \frac{1}{4} + C = 0\]
\[ \Rightarrow C = 0\]
\[ = 2\pi \int_1^0 \frac{\frac{1}{4}}{1 - z}dz + 2\pi \int_1^0 \frac{\frac{1}{4}}{1 + z}dz + 2\pi \int_1^0 \frac{\frac{1}{2}}{1 + z^2}dz\]
\[ = \left.\frac{2\pi}{4} \times \frac{\log\left( 1 - z \right)}{- 1}\right|_1^0 + \left.\frac{2\pi}{4} \times \log\left( 1 + z \right)\right|_1^0 + \left.\frac{2\pi}{2} \times \tan^{- 1} z\right|_1^0 \]
\[ = - \frac{\pi}{2}\left( \log1 - \log0 \right) + \frac{\pi}{2}\left( \log1 - \log2 \right) + \pi\left( \tan^{- 1} 0 - \tan^{- 1} 1 \right)\]
\[ = - \frac{\pi}{2}\left[ 0 - \left( - \infty \right) \right] + \frac{\pi}{2}\left( 0 - \log2 \right) + \pi\left( 0 - \frac{\pi}{4} \right)\]
\[ = - \infty - \frac{\pi}{2}\log2 - \frac{\pi^2}{4}\]
\[ = - \infty\]
Notes
The answer does not matches with the answer provided for the question.
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Choose the correct alternative:
`Γ(3/2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.