Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\limits_0^{1 . 5} \left[ x \right] dx\]
\[ = \int_0^1 \left[ x \right] dx + \int_1^{1 . 5} \left[ x \right] dx\]
\[ = \int_0^1 \left( 0 \right) dx + \int_1^{1 . 5} \left( 1 \right)dx ................\left[\because \left[ x \right] = \begin{cases}0&& 0 \leq x < 1\\1&& 1 \leq x < 1 . 5\end{cases} \right]\]
\[ = 0 + \left[ x \right]_1^{1 . 5} \]
\[ = 1 . 5 - 1\]
\[ = 0 . 5\]
\[ = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: