Advertisements
Advertisements
Question
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Options
12
4
4!
64
MCQ
Solution
4!
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]
\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]
\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]
\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]
\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.