Advertisements
Advertisements
Question
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Options
- \[\frac{a + b}{2} \int\limits_a^b f\left( b - x \right) dx\]
- \[\frac{a + b}{2} \int\limits_a^b f\left( b + x \right) dx\]
- \[\frac{b - a}{2} \int\limits_a^b f\left( x \right) dx\]
- \[\frac{b + a}{2} \int\limits_a^b f\left( x \right) dx\]
Solution
\[Let\, I = \int_a^b x f\left( x \right) d x .............(1)\]
\[ = \int_a^b \left( a + b - x \right) f\left( a + b - x \right) d x\]
\[ = \int_a^b \left( a + b - x \right) f\left( x \right) dx ...............(2)\]
\[ \text{Adding (1) and (2)}\]
\[2I = \int_a^b \left( x + a + b - x \right) f\left( x \right) d x\]
\[ = \left( a + b \right) \int_a^b f\left( x \right) d x \]
\[Hence\ I = \frac{a + b}{2} \int_a^b f\left( x \right) d x\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.