English

If F (A + B − X) = F (X), Then B ∫ a X F (X) Dx is Equal To,A + B 2 B ∫ a F ( B − X ) D X,A + B 2 B ∫ a F ( B + X ) D X,B − a 2 B ∫ a F ( X ) D X,B + a 2 B ∫ a F ( X ) D X - Mathematics

Advertisements
Advertisements

Question

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to

Options

  • \[\frac{a + b}{2} \int\limits_a^b f\left( b - x \right) dx\]

     

  • \[\frac{a + b}{2} \int\limits_a^b f\left( b + x \right) dx\]

     

  • \[\frac{b - a}{2} \int\limits_a^b f\left( x \right) dx\]
  • \[\frac{b + a}{2} \int\limits_a^b f\left( x \right) dx\]
MCQ

Solution

\[\frac{a + b}{2} \int\limits_a^b f\left( x \right) dx\]

\[Let\, I = \int_a^b x f\left( x \right) d x .............(1)\]

\[ = \int_a^b \left( a + b - x \right) f\left( a + b - x \right) d x\]

\[ = \int_a^b \left( a + b - x \right) f\left( x \right) dx ...............(2)\]

\[ \text{Adding (1) and (2)}\]

\[2I = \int_a^b \left( x + a + b - x \right) f\left( x \right) d x\]

\[ = \left( a + b \right) \int_a^b f\left( x \right) d x \]

\[Hence\ I = \frac{a + b}{2} \int_a^b f\left( x \right) d x\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 39 | Page 120

RELATED QUESTIONS

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×